Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Microbiologyopen ; 7(2): e00550, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29057585

RESUMO

The effect of pressure and temperature on microbial communities of marine environments contaminated with petroleum hydrocarbons is understudied. This study aims to reveal the responses of marine bacterial communities to low temperature, high pressure, and contamination with petroleum hydrocarbons using seawater samples collected near an offshore Brazilian platform. Microcosms containing only seawater and those containing seawater contaminated with 1% crude oil were subjected to three different treatments of temperature and pressure as follows: (1) 22°C/0.1 MPa; (2) 4°C/0.1 MPa; and (3) 4°C/22 MPa. The effect of depressurization followed by repressurization on bacterial communities was also evaluated (4°C/22 MPaD). The structure and composition of the bacterial communities in the different microcosms were analyzed by PCR-DGGE and DNA sequencing, respectively. Contamination with oil influenced the structure of the bacterial communities in microcosms incubated either at 4°C or 22°C and at low pressure. Incubation at low temperature and high pressure greatly influenced the structure of bacterial communities even in the absence of oil contamination. The 4°C/22 MPa and 4°C/22 MPaD treatments resulted in similar DGGE profiles. DNA sequencing (after 40 days of incubation) revealed that the diversity and relative abundance of bacterial genera were related to the presence or absence of oil contamination in the nonpressurized treatments. In contrast, the variation in the relative abundances of bacterial genera in the 4°C/22 MPa-microcosms either contaminated or not with crude oil was less evident. The highest relative abundance of the phylum Bacteroidetes was observed in the 4°C/22 MPa treatment.


Assuntos
Bacteroidetes/metabolismo , Hidrocarbonetos/efeitos adversos , Microbiota/efeitos dos fármacos , Poluição por Petróleo/efeitos adversos , Petróleo/efeitos adversos , Proteobactérias/metabolismo , Organismos Aquáticos/genética , Organismos Aquáticos/metabolismo , Bacteroidetes/classificação , Bacteroidetes/genética , Temperatura Baixa , Sequenciamento de Nucleotídeos em Larga Escala , Microbiota/fisiologia , Proteobactérias/classificação , Proteobactérias/genética , RNA Ribossômico 16S/genética , Água do Mar/microbiologia
2.
Braz. j. microbiol ; 44(4): 1299-1304, Oct.-Dec. 2013. ilus
Artigo em Inglês | LILACS | ID: lil-705290

RESUMO

Halophilic microorganisms are source of potential hydrolytic enzymes to be used in industrial and/or biotechnological processes. In the present study, we have investigated the ability of the moderately halophilic bacterium Halobacillus blutaparonensis (strain M9), a novel species described by our group, to release proteolytic enzymes. This bacterial strain abundantly proliferated in Luria-Bertani broth supplemented with 2.5% NaCl as well as secreted proteases to the extracellular environment. The production of proteases occurred in bacterial cells grown under different concentration of salt, ranging from 0.5% to 10% NaCl, in a similar way. The proteases secreted by H. blutaparonensis presented the following properties: (i) molecular masses ranging from 30 to 80 kDa, (ii) better hydrolytic activities under neutral-alkaline pH range, (iii) expression modulated according to the culture age, (iv) susceptibility to phenylmethylsulphonyl fluoride, classifying them as serine-type proteases, (v) specific cleavage over the chymotrypsin substrate, and (vi) enzymatic stability in the presence of salt (up to 20% NaCl) and organic solvents (e.g., ether, isooctane and cyclohexane). The proteases described herein are promising for industrial practices due to its haloalkaline properties.


Assuntos
Halobacillus/enzimologia , Serina Proteases/análise , Meios de Cultura/química , Estabilidade Enzimática , Inibidores Enzimáticos/metabolismo , Concentração de Íons de Hidrogênio , Halobacillus/crescimento & desenvolvimento , Peso Molecular , Proteólise , Fluoreto de Fenilmetilsulfonil/metabolismo , Serina Proteases/química , Cloreto de Sódio/metabolismo
3.
Braz J Microbiol ; 44(4): 1299-304, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24688526

RESUMO

Halophilic microorganisms are source of potential hydrolytic enzymes to be used in industrial and/or biotechnological processes. In the present study, we have investigated the ability of the moderately halophilic bacterium Halobacillus blutaparonensis (strain M9), a novel species described by our group, to release proteolytic enzymes. This bacterial strain abundantly proliferated in Luria-Bertani broth supplemented with 2.5% NaCl as well as secreted proteases to the extracellular environment. The production of proteases occurred in bacterial cells grown under different concentration of salt, ranging from 0.5% to 10% NaCl, in a similar way. The proteases secreted by H. blutaparonensis presented the following properties: (i) molecular masses ranging from 30 to 80 kDa, (ii) better hydrolytic activities under neutral-alkaline pH range, (iii) expression modulated according to the culture age, (iv) susceptibility to phenylmethylsulphonyl fluoride, classifying them as serine-type proteases, (v) specific cleavage over the chymotrypsin substrate, and (vi) enzymatic stability in the presence of salt (up to 20% NaCl) and organic solvents (e.g., ether, isooctane and cyclohexane). The proteases described herein are promising for industrial practices due to its haloalkaline properties.


Assuntos
Halobacillus/enzimologia , Serina Proteases/análise , Meios de Cultura/química , Inibidores Enzimáticos/metabolismo , Estabilidade Enzimática , Halobacillus/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Peso Molecular , Fluoreto de Fenilmetilsulfonil/metabolismo , Proteólise , Serina Proteases/química , Cloreto de Sódio/metabolismo
4.
Antonie Van Leeuwenhoek ; 101(2): 289-302, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21901521

RESUMO

The draft genome of Dietzia cinnamea strain P4 was determined using pyrosequencing. In total, 428 supercontigs were obtained and analyzed. We here describe and interpret the main features of the draft genome. The genome contained a total of 3,555,295 bp, arranged in a single replicon with an average G+C percentage of 70.9%. It revealed the presence of complete pathways for basically all central metabolic routes. Also present were complete sets of genes for the glyoxalate and reductive carboxylate cycles. Autotrophic growth was suggested to occur by the presence of genes for aerobic CO oxidation, formate/formaldehyde oxidation, the reverse tricarboxylic acid cycle and the 3-hydropropionate cycle for CO(2) fixation. Secondary metabolism was evidenced by the presence of genes for the biosynthesis of terpene compounds, frenolicin, nanaomycin and avilamycin A antibiotics. Furthermore, a probable role in azinomycin B synthesis, an important product with antitumor activity, was indicated. The complete alk operon for the degradation of n-alkanes was found to be present, as were clusters of genes for biphenyl ring dihydroxylation. This study brings new insights in the genetics and physiology of D. cinnamea P4, which is useful in biotechnology and bioremediation.


Assuntos
Actinomycetales/genética , Genoma Bacteriano , Microbiologia do Solo , Actinomycetales/classificação , Actinomycetales/enzimologia , Actinomycetales/crescimento & desenvolvimento , Actinomycetales/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biotecnologia , Ecossistema , Viabilidade Microbiana , Dados de Sequência Molecular , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...